The DAIS Qual Exam in Fall 2022 (written exam) has been scheduled to be at 1-5pm on Monday, Oct. 3, 2022 in Siebel Center room 3401.
This reading list consists of multiple topic sections, each containing 2-3 papers. The questions in the written exam will be based on the papers listed here, with 1-2 questions related to each section. That is, if a section has two papers, you can usually expect to see one question related to the section in the qual exam, while if a section has three papers, you can usually expect to see two questions related to the section.
Section 1
- Maria Maistro, Lucas Chaves Lima, Jakob Grue Simonsen, and Christina Lioma. 2021. Principled Multi-Aspect Evaluation Measures of Rankings. Proceedings of the 30th ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, New York, NY, USA, 1232–1242. DOI:https://doi.org/10.1145/3459637.3482287 PDF file: http://www.library.illinois.edu/proxy/go.php?url=https://dl.acm.org/doi/pdf/10.1145/3459637.3482287
- Naseri S., Dalton J., Yates A., Allan J. (2021) CEQE: Contextualized Embeddings for Query Expansion. In: Hiemstra D., Moens MF., Mothe J., Perego R., Potthast M., Sebastiani F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science, vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_31 PDF file: https://link.springer.com/content/pdf/10.1007%2F978-3-030-72113-8_31.pdf
- Salle A., Malmasi S., Rokhlenko O., Agichtein E. (2021) Studying the Effectiveness of Conversational Search Refinement Through User Simulation. In: Hiemstra D., Moens MF., Mothe J., Perego R., Potthast M., Sebastiani F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science, vol 12656. Springer, Cham. https://doi.org/10.1007/978-3-030-72113-8_39. PDF file: https://link.springer.com/content/pdf/10.1007%2F978-3-030-72113-8_39.pdf
Section 2
- Ahmed Alaa and Mihaela van Der Schaar. 2020. Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions. In ICML. https://arxiv.org/abs/2007.13481
- Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. 2019. Learning discrete structures for graph neural networks. In ICML. PMLR, 1972–1982. https://arxiv.org/abs/1903.11960
- Jian Kang, Qinghai Zhou, Hanghang Tong: JuryGCN: Quantifying Jackknife Uncertainty on Graph Convolutional Networks. KDD 2022: 742-752. http://jiank2.web.illinois.edu/files/kdd22/kang22jurygcn.pdf
Section 3
- Jan Overgoor, Austin Benson, and Johan Ugander. Choosing to grow a graph: modeling network formation as discrete choice. In The World Wide Web Conference, pages 1409–1420. ACM, 2019. https://arxiv.org/abs/1811.05008
- Yuxin Xiao, Adit Krishnan, and Hari Sundaram. Discovering strategic behaviors for collaborative content-production in social networks. In The Web Conference (WebConf 2020), pages 2078–2088, Taipei, Taiwan, April 2020. https://arxiv.org/abs/2003.03670
- Harshay Shah, Suhansanu Kumar, and Hari Sundaram. Growing attributed networks through local processes. In The World Wide Web Conference – WWW ’19, pages 3208–3214. ACM Press, May 2019. https://arxiv.org/abs/1712.10195
Section 4
- Tamari, Ronen and Shani, Chen and Hope, Tom and Petruck, Miriam R L and Abend, Omri and Shahaf, Dafna. 2020. {L}anguage (Re)modelling: {T}owards Embodied Language Understanding. ACL2020. https://aclanthology.org/2020.acl-main.559
- Kolluru, Keshav and Mohammed, Muqeeth and Mittal, Shubham and Chakrabarti, Soumen and Mausam. 2022. Alignment-Augmented Consistent Translation for Multilingual Open Information Extraction. ACL2022. https://aclanthology.org/2022.acl-long.179
- Sundriyal, Megha and Malhotra, Ganeshan and Akhtar, Md Shad and Sengupta, Shubhashis and Fano, Andrew and Chakraborty, Tanmoy. 2022. Document Retrieval and Claim Verification to Mitigate {COVID}-19 Misinformation. ACL2022. https://aclanthology.org/2022.constraint-1.8
Section 5
- Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang and Jiawei Han, “Topic Discovery via Latent Space Clustering of Language Model Embeddings”, in Proc. The ACM Web Conf. 2022 (WWW’22), April 2022
- Jiaming Shen, Yunyi Zhang, Heng Ji and Jiawei Han, “Corpus-based Open-Domain Event Type Induction“, in Proc. 2021 Conf. on Empirical Methods in Natural Language Processing (EMNLP’21), Nov. 2021
Section 6
- Fu, Tianfan, Cao Xiao, Cheng Qian, Lucas M. Glass, and Jimeng Sun. 2021. “Probabilistic and Dynamic Molecule-Disease Interaction Modeling for Drug Discovery.” In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 404–14. KDD ’21.
- Fu, Tianfan, Kexin Huang, Cao Xiao, Lucas M. Glass, and Jimeng Sun. 2022. “HINT: Hierarchical Interaction Network for Trial Outcome Prediction Leveraging Web Data.” Cell Patterns and also at arXiv [cs.CY]. arXiv. http://arxiv.org/abs/2102.04252 .
- Huang, Kexin, Cao Xiao, Lucas M. Glass, and Jimeng Sun. 2020. “MolTrans: Molecular Interaction Transformer for Drug–target Interaction Prediction.” Bioinformatics , October. https://doi.org/10.1093/bioinformatics/btaa880.
Section 7
- Agiwal, Ankur, et al. “Napa: powering scalable data warehousing with robust query performance at Google.” Proceedings of the VLDB Endowment 14.12 (2021): 2986-2997. http://www.vldb.org/pvldb/vol14/p2986-sankaranarayanan.pdf
- Durner, Dominik, Viktor Leis, and Thomas Neumann. “JSON Tiles: Fast Analytics on Semi-Structured Data.” Proceedings of the 2021 International Conference on Management of Data. 2021. http://www.db.in.tum.de/~durner/papers/json-tiles-sigmod21.pdf
- Lu, Yi, et al. “Epoch-based commit and replication in distributed OLTP databases.” Proceedings of the VLDB Endowment 14.5 (2021): 743-756. https://pages.cs.wisc.edu/~yxy/pubs/coco.pdf
Section 8
- Y. Zhou, X. Li, and A. Banerjee, “Noisy Truncated SGD: Optimization and Generalization,” SIAM International Conference on Data Mining (SDM), 2022, https://arxiv.org/abs/2103.00075
- M. Belkin, D. Hsu, S. Ma, S. Mandal, “Reconciling modern machine learning practice and the bias-variance trade-off,” Proceedings National Academy of Science (PNAS), 2019, https://www.pnas.org/content/116/32/15849.short
Section 9
- Zhuangdi Zhu, Junyuan Hong, Jiayu Zhou: Data-Free Knowledge Distillation for Heterogeneous Federated Learning. ICML 2021: 12878-12889
- Jun Wu, Jingrui He: Domain Adaptation with Dynamic Open-Set Targets. KDD 2022: 2039-2049
- Ekdeep Singh Lubana, Chi Ian Tang, Fahim Kawsar, Robert P. Dick, Akhil Mathur: Orchestra: Unsupervised Federated Learning via Globally Consistent Clustering. ICML 2022: 14461-14484
Session 10
- Jie Huang, Kevin Chang, Jinjun Xiong, Wen-Mei Hwu: Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach. ACL/IJCNLP (1) 2021: 3641-3651.
- Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, Bo Yang: Geom-GCN: Geometric Graph Convolutional Networks. ICLR 2020.